Comparison of the Microstructure, Tensile, and Creep Behavior for Ti-24Al-17Nb-0.66Mo (Atomic Percent) and Ti-24Al-17Nb-2.3Mo (Atomic Percent) Alloys

نویسنده

  • J. P. QUAST
چکیده

The effect of small molybdenum additions, 0.66 and 2.3 at. pct, on the microstructure, tensile, and creep behavior of a nominally Ti-24Al-17Nb (at. pct) alloy was investigated. The alloy containing 2.3 at. pct Mo contained higher body-centered-cubic (bcc) phase volume fractions, which was expected as Mo stabilizes the bcc phase. Constant load, tensile-creep experiments were performed in the stress range of 29 to 275 MPa and the temperature range of 650 C to 710 C, in both air and vacuum environments. In-situ creep experiments were performed inside a scanning electron microscope chamber in order to identify the deformation evolution from surface observations. From these experiments, it was evident that a2 intergranular cracking was prevalent and initiated the fracture process where the crack path followed the a2 grain boundaries. The Ti-24Al-17Nb-2.3Mo (at. pct) alloy exhibited significantly lower creep rates than the Ti-24Al-17Nb-0.66Mo (at. pct) alloy, and this was associated with less contiguity of the a2 phase.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

COMMONALITY OF PHENOMENA IN COMPOSITE MATERIALS The effect of molybdenum on the microstructure and creep behavior of Ti–24Al–17Nb–xMo alloys and Ti–24Al–17Nb–xMo SiC-fiber composites

The effect of molybdenum (Mo) on the microstructure and creep behavior of nominally Ti–24Al– 17Nb (at.%) alloys and their continuously reinforced SiCfiber composites (fiber volume fraction = 0.35) was investigated. Constant-load, tensile-creep experiments were performed in the stress range of 10–275 MPa at 650 C in air. A Ti–24Al–17Nb–2.3Mo (at.%) alloy exhibited significantly greater creep res...

متن کامل

The Microstructure, Creep, and Tensile Behavior for Ti-5Al-45Nb (Atomic Percent) Fully-b Alloy

The microstructure, tensile, and creep behavior of a Ti-5Al-45Nb (at. pct) alloy was evaluated. The main objective of processing and characterizing this alloy was to obtain the constituent properties of a fully-b Ti-Al-Nb alloy to aid in modeling the tensile and creep properties of twophase orthorhombic + body-centered-cubic (O + bcc) alloys. A second objective was to compare the tensile and cr...

متن کامل

Characterization of the microstructure, tensile and creep behavior of powder metallurgy processed and rolled Ti-6Al-4V-1B Alloy

This work investigated the microstructure and elevated-temperature (400-475C) tensile and tensile-creep deformation behavior of a powder metallurgy (PM) rolled Ti-6Al-4V-1B(wt.%) alloy. The PM rolled Ti-6Al-4V-1B alloy exhibited a duplex microstructure, and it did not exhibit a strong α-phase texture compared with the PM extruded Ti-6Al-4V-1B alloy. The PM rolled Ti6Al-4V-1B alloy exhibited gre...

متن کامل

Microstructure-Property Relationships of Two Ti2AlNb-based Intermetallic Alloys: Ti-15Al-33Nb(at.%) and Ti-21Al-29Nb(at.%)

Two Ti2AlNb intermetallic orthorhombic (O) alloys, Ti-15Al-33Nb and Ti-21Al29Nb(at.%), were subtransus processed into sheets, using pancake forging and hot-pack rolling, and evaluated in tension (25 and 650°C) and creep (650-710°C) and the properties and deformation behavior were related to microstructure. Some of the microstructural features evaluated were grain boundary character, grain size,...

متن کامل

Time-temperature transformation behavior of Ti-24Al- 11Nb

The time-temperature transformation behavior of a rapidly solidified (RS) Ti-24Al-11Nb alloy has been studied between 450 and 850 “C using X-ray diffraction, electron diffraction, transmission electron microscopy and microindentation methods. A revised isothermal transformation path from the initial B2 to the final cz? structure has been proposed: B2 (Pmjm)B19 (Pmma)-0’ (Cmcm) 0’ (Cmcm) a2 (P6,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007